

 Navigation

 	
 index

 	
 next |

 	rampage-php 1.1.2-dev documentation

Reference Guide to rampage-php

Welcome to the reference guide to rampage-php - an addon library to ZendFramework 2 [http://framework.zend.com/].

Overview

Rampage-PHP is a framework enhancement library for ZendFramework 2.
It is supposed to offer some convenience components.

As most developers don’t like to write the same code fragments over and over again.
This is the point where rampage-php comes in.

Read the Quickstart Guide to get started.

Key Features

	Tight integration between Di and ServiceManager

	XML based module configurations (XSD provided)

	Powerful resource locators for module resource files (i.e. js and css)

	Advanced url locators/helpers

	Cascading themes support

	Base implementation to create mergable XML config models

	Service callback wrappers

	Filesystem Containers

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Quickstart

This section will show you how to set up a basic application and how to start.

We strongly recommend to use composer as dependency manager, since it will simplify
you life a lot and take care of your library dependencies. In fact this tutorial
will rely on it.

See getcomposer.org [http://getcomposer.org/] for download and installation instructions
(It’s really simple since it’s just a single phar file).

Installation / Application Setup

At first we’ll define the dependencies of our application. By now we only need to add
rampage-php/framework as only dependency. This already defines dependencies to the
essential zf2 components (i.e. zend-mvc):

php composer.phar require rampage-php/framework

This command will add the dependency to your composer.json. For more information on
the composer.json package file see the Composer Documentation [http://getcomposer.org/doc/00-intro.md].

After doing so, we can run the install command to download all dependencies and generate the autoload
files:

php composer.phar install

After executing this command, there will be a vendor directory containing all dependencies.
To use them, all you need to do is to include vendor/autoload.php and all dependency classes
become available to you.

Creating A Skeleton

After doing the composer magic, we only have the vendor dir. But now we want to create an
application skeleton to start with.
To simplify things, rampage comes with a tool to do so, a script called rampage-app-skeleton.php

Since rampage-php enhances zf2, it uses the zf2 layout. That means all modules are basically namespaces.
In vanilla ZF2, you can only use the first namespace segment as module name which is quite limiting.
Usually the first segment is the vendor name. But rampage-php enhances this behavior and adds
the ability to use subnamespaces as well and map them to a dot-separated directory name.

Let’s assume your application module should be namespaced acme\myapp.
Now let’s create the application layout with this modulename:

php vendor/bin/rampage-app-skeleton.php create acme.myapp

For windows this command should be:

.\vendor\bin\rampage-app-skeleton.php create acme.myapp

This will create:

	a public directory which will contain the webserver root.

	an application directory containing the application components

	the module skeleton for your application located in application/modules/acme.myapp

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Zend\Di Enhancements

Rampage-PHP provides a couple of enhancements to the default Di/ServiceManager
implementations of zf2.

	Cupling ServiceManager And Di

	Define Services For Dependency Injection

	DIServiceFactory

	DIPluginServiceFactory

	Abstract Service Factory

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Zend\Di Enhancements

Cupling ServiceManager And Di

Rampage combines those both components more closely than zf2.
The Di InstanceManager will use the ServiceManager to look up a class instance. This
allows you to call $serviceManager->get('di')->newInstance($classname); which will respect and inject
configured services at any time.

Note

Doing this call in plain zf2 would cause the Di framework to create new instances for
classes that haven’t been created via Di and ignoring the configured services.

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Zend\Di Enhancements

Define Services For Dependency Injection

There are two options to refernce services for dependency injection which depends on your needs.

	Option 1: ServiceManager Name/Alias

	Option 2: DI InstanceManager Alias

Option 1: ServiceManager Name/Alias

This is the simplest way of providing your services to the di framework.
Either you define the service directly with its fqcn or you add an alias pointing to
the fqcn .

return [
 'invokables' => [
 'my\app\ClassName' => 'my\app\ClassName', // Direct naming
 'MyService' => 'my\app\AnotherClassName',
],
 'aliases' => [
 'my\app\SomeInterface' => 'MyService', // Alias a class/interface to a service
]
];

Option 2: DI InstanceManager Alias

This way is more flexible and allows you to define services and injections more precisely.
To do so you should create an alias Matching your service name in your DI config:

// di.config.php
// Assuming "MyServiceName" and "AnotherServiceName" are defined by the ServiceManager
return [
 'instance' => [
 'aliases' => [
 // This makes the services known to the di framework.
 'MyServiceName' => 'my\app\SomeInterface', // Pointing to an interface is sufficient
 'AnotherServiceName' => 'my\app\SomeClass', // Pointing to a class is more flexible
],
 'preferences' => [
 // Explicit definition to
 // use the services to provide the dependencies.
 'thirdparty\SomeInterface' => 'AnotherServiceName',
 'thirtparty\AbstractClass' => 'AnotherServiceName',

 // Let Zend\Di decide which alias provides the dependency
 // (implements or inhertis the interface)
 'foo\bar\AnotherInterface' => ['MyServiceName', 'AnotherServiceName'],
]
]
];

Note

When using an alias to provide a preference, the aliased class name must implement or inherit the
the provided dependency class/interface.
Zend\Di will do a sanity check if this is the case (i.e. to pick the matching provider)!

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Zend\Di Enhancements

DIServiceFactory

Cupling ServiceManager And Di allows the library to provide a service factory to create class
instances purely by dependency injection.

Example:

// Service config:
return [
 'factories' => [
 'MyService' => new \rampage\core\services\DIServiceFactory(ServiceImplementation::class);
]
];

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Zend\Di Enhancements

DIPluginServiceFactory

As much as DIServiceFactory this allows defining a class to be instanciated by dependency injection.
The difference to the DIServiceFactory is that this may be used for zf2 PluginManagers.

Example:

// PluginManager config:
return [
 'factories' => [
 'myhelper' => new \rampage\core\services\DIPluginServiceFactory(MyHelper::class);
]
];

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Zend\Di Enhancements

Abstract Service Factory

As in zf2, there is an abstract service factory, which allows you to request a service by a classname
without the need to define it explicitly. It will be automatically instanciated via the di framework then.

The difference to the zf2 implementation is, that all configured services are respected by
the di framework (see Cupling ServiceManager And Di).

So the following code will work as expected.

di.config.php:

return [
 'factories' => ['DbAdapter' => MyDbAdapterFactory::class],
 'aliases' => ['Zend\Db\Adapter\AdapterInterface' => 'DbAdapter']
]

SomeClass.php:

namespace my\app;

use Zend\Db\Adapter\AdapterInterface as DbAdapterInterface;

class SomeClass
{
 /**
 * @var DbAdapterInterface
 */
 protected $adapter;

 /**
 * Constructor dependency to a Zend\Db\Adapter\AdapterInterface
 */
 public function __construct(DbAdapterInterface $adapter)
 {
 $this->adapter = $adapter;
 }

 // ...
}

Usage:

namespace my\app;

// ...

// $instance will be created via Di and the "DbAdapter" service will be injected
// via constructor.
$instance = $serviceLocator->get(SomeClass::class);

// ...

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Module/Component Resources

New in version 1.0.

Some of your modules may need to provide public resources like images, css or js files.
To allow bundeling them within your module, rampage offers a resource locator system that will automatically
publish them. You don’t need to copy resources manually or make your vendor directory available to the webserver.

Defining Module Resources

Defining module resources is pretty easy. You just need to add them to your zf2 module config:

class Module
{
 public function getConfig()
 {
 return [
 // ...
 'rampage' => [
 'resources' => [
 // Minimal, define only the base directory:
 'foo.bar' => __DIR__ . '/resources',

 // More detailed, allows to define additional resource types:
 'foo.baz' => [
 'base' => __DIR__ . '/resources',
 'xml' => __DIR__ . '/resources/xml',
],
]
]
];
 }
}

If you’re using the manifest.xml for your modules, you can define them in the resources tag:

<manifest xmlns="http://www.linux-rampage.org/ModuleManifest" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.linux-rampage.org/ModuleManifest http://www.linux-rampage.org/ModuleManifest ">
 <resources>
 <paths>
 <path scope="foo.bar" path="resource" />
 <path scope="foo.baz" path="resource" />
 <path scope="foo.baz" type="xml" path="resource/xml" />
 </paths>
 </resources>
</manifest>

Accessing Resources In Views

To access resources in views, you can use the resourceurl helper.
The argument passed to this helper is the relative file path prefixed with @ and the scope like this: @scope/file/path.css.

Paths without the @ prefix will be searched in the current theme hierarchy directly. No attempt will be made to find them
in a resource location.

Example:

<img src="<?php echo $this->resourceUrl('@my.module/images/foo.gif') ?>" />

Addressing Templates

Templates will also be populated by the resource locator. You can address them the same
way as resources in view scripts like this: @scope/templatepath.

Note

Paths without the @ prefix will be searched in the theme directly or treated as
default zf2 templates if they’re not found in the theme hierarchy.

Example:

$viewModel = new ViewModel();
$viewModel->setTemplate('my.module/some/template');

Static Resource Publishing

There is also a way to publish resources to the public directory for static delivery.
This is useful for production environments, where performance is important.

There are two ways to do this:

	Use The Publishing Controller

	Implement/Modify The Publishing Strategy

Use The Publishing Controller

New in version 1.1.1.

The easiest way to do this, is to register the resources controller for publishing.

// module.config.php
return [
 'console' => [
 'router' => [
 'routes' => [
 'publish-resources' => \rampage\core\controllers\ResourcesController::getConsoleRouteConfig(),
]
]
],
];

You may also pass the route to getConsoleRouteConfig() if you don’t like publish resources as route or create an own route yourself
pointing to the publish action of rampage\core\controllers\ResourcesController.

Note

The getConsoleRouteConfig() method is available since 1.1.1, prior that version you have to register the route config on your own.

return [
 'console' => [
 'router' => [
 'routes' => [
 'publish-resources' => [
 'options' => [
 'route' => 'publish resources',
 'defaults' => [
 'controller' => 'rampage\\core\\controllers\\ResourcesController',
 'action' => 'publish'
]
]
]
]
]
]
];

Implement/Modify The Publishing Strategy

The controller uses the service rampage.ResourcePublishingStrategy which must implement rampage\core\resources\PublishingStrategyInterface.
By default this interface is implemented by rampage\core\resources\StaticResourcePublishingStrategy.

The default strategy will publish all resources to static/ in the public directory.

Special Controllers/Routes

When implementing an authentication strategy which protects all of your routes from unauthorized access, you should be aware that
the resource publishing strategy uses a ZF2 route/controller to publish static resources from your vendor or module directories.

The controller class is rampage\core\controllers\ResourcesController and it is registerd as rampage.cli.resources in the
controller manager. The route for this controller is called rampage.core.resources.

If you do not allow this route/controller, public resources from your modules may not be served.

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Themes Support

Rampage-PHP allows you to register cascading themes to apply different styles to your
application in a flexible way.

Themes can depend on another theme to which it will fall back when a resource is not found.

Of course you can overwrite module resources like templates, css, js, images, etc.
In this case the resource will be loaded from your (or the parent) theme if present.

Defining Themes

Themes can be defined in your ZF2 module (or application) configuration as follows:

namespace my\component;

class Module
{
 public function getConfig()
 {
 return [
 'rampage' => [
 'themes' => [
 'my.theme.name' => [
 // Simple path definition following the default layout
 'path' => __DIR__ . '/../theme',
 'fallbacks' = ['parent.theme', rampage\core\resources\Theme::DEFAULT_THEME],
],

 'my.other.theme.name' => [
 // More detailed path definition
 'path' => [
 'base' => __DIR__ . '/../theme',
 'template' => __DIR__ . '/../theme/templates',
],
 'fallbacks' = ['my.theme.name', 'parent.theme', rampage\core\resources\Theme::DEFAULT_THEME],
]

]
]
];
 }
}

One module may define multiple themes if needed.

Note

The theme will try the fallbacks in the order in which they’re defined.
It will fallback flat through those themes, not in depth.

i.e. The fallbacks of a fallback theme are not visited.

Theme Directory Layout

Within the defined theme directory, there should be two directories.

	public Which contains all public assets

	template Which contains template files

Overwriting Module Resources

Of course it is possible to overwrite module resources, like templates or public assets, in a theme.
To do so simply place the file ine a directory named like the module’s resource name (See Defining Module Resources for details).

Example:

	
	theme directory

	
	
	public

	
	
	module.resource.name

	
	some/public/file.css

	
	template

	
	
	module.resource.name

	
	some/template.phtml

	some-other-template.phtml

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Filesystem Abstraction

The rampage\\filesystem component provides an OO abstraction layer for
filesystem access.

A filesystem might be a local, remote or even a virtual filesystem.

FilesystemInterface

Interface: rampage\\filesystem\\FilesystemInterface

This interface defines basic filesystem access via the ArrayAccess and RecursiveIterator patterns.
It encapsulates the underlying filesystem and provides container like access. Much like Phar [http://php.net/manual/de/class.phar.php] or ZipArchive [http://de1.php.net/manual/de/class.ziparchive.php]

It is not intended to provide write access.

The following classes are provided as implementation for this interface:

	LocalFilesystem: For fs access on disk.

	GridFS: For accessing a MongoDB GridFS.

WritableFilesystemInterface

Interface: rampage\\filesystem\\WritableFilesystemInterface

This interface enhances the FilesystemInterface by defining write capabilities which are:

	adding files

	deleting files

	creating directories

	updating the access/modified timestamps (touch)

An implementation must provide these methods and respond gracefully, when they’re not supported (i.e. creating directories).

The following classes are provided as implementation for this interface:

	WritableLocalFilesystem: for fs access on disk.

	WritableGridFS: For accessing a MongoDB GridFS.

Available Implementations

	LocalFilesystem

	WritableLocalFilesystem

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Filesystem Abstraction

LocalFilesystem

The rampage\\filesystem\\LocalFilesystem implements the FilesystemInterface for
a local filesystem on disk. It encapsulates DirectoryIterator and SplFileInfo to provide this functionality.

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Filesystem Abstraction

WritableLocalFilesystem

The rampage\\filesystem\\WritableLocalFilesystem implements the WritableFilesystemInterface for
a local filesystem on disk.

It extends LocalFilesystem and encapsulates DirectoryIterator and SplFileInfo to provide this functionality.

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Convenience Classes

There are some convenience classes to make development of common tasks more easy

	ServiceCallbackDelegator

	GracefulArrayAccess

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Convenience Classes

ServiceCallbackDelegator

This class allows to wrap a lazy load callback to a specific service.
Lazy means this class will only instanciate the service when the callback is about to be invoked.

The service locator may be injected or changed at any time. That means you can create the callback
without a service locator attached and assign it later.

The service locator must implement Zend\\ServiceManager\\ServiceLocatorInterface, which is the case
for the zf2 ServiceManager.

Note

Invoking such a callback wrapper that has no service locator, will
throw a rampage\core\exceptions\LogicException.

Usage

The constructor takes two arguments. The first one is the service name, which is required.
The second, optional, argument is the method name to call. If the method name is omitted,
the service object will be treated as invokable (i.e. for classes that implement __invoke()).

Example:

// ...
$callback = new rampage\core\ServiceCallbackDelegator('MyServiceName', 'someMethod');
$callback->setServiceLocator($serviceManager); // assuming $serviceManager is a ServiceLocator

(new Zend\EventManager\EventManager())->attach('somevent', $this, $callback);

This example would request the service MyServiceName from $serviceLocator when somevent
is triggered on the EventManager.

Injecting the service locator

The service locator can be set via setServiceLocator() on the callback instance at any time (See the Usage Example above).

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Convenience Classes

GracefulArrayAccess

This class provides graceful access to arrays or objects that implement ArrayAccess.
This means requesting a key that does not exist will not trigger a warning, but return a default instead.

Usage Example

$wrapper = new GracefulArrayAccess(['bar' => true]);

var_dump($wrapper->get('foo', 'default value'));
var_dump($wrapper->get('foo'));
var_dump($wrapper->get('bar'));

This example will output:

string(13) "default value"
NULL
bool(true)

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Additional Components Documentation

This section will cover additional components, that are not part of the core library.

	Authentication Module (rampage.auth)

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rampage-php 1.1.2-dev documentation

 	Additional Components Documentation

Authentication Module (rampage.auth)

This component provides enhancments to the zf2 authentication component (Zend\Authentication [http://framework.zend.com/manual/2.3/en/index.html#zend-authentication]).

Composer Installation

To obtain this component, add a dependency for rampage-php/auth to your composer.json.

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	rampage-php 1.1.2-dev documentation

Glossary

	ArrayAccess

	The array access pattern/interface defines a container object that can be accessed as array.
See the ArrayAccess [http://de2.php.net/manual/en/class.arrayaccess.php] php documentation for details.

	Traversable
Iterator

	The iterator or Traversable pattern allows to iterate over container objects (i.e. via foreach).
See the Iterator [http://de2.php.net/manual/en/class.iterator.php] php documentation for details.

	RecursiveIterator

	Additionally to the Iterator pattern, this pattern allows a multilevel or tree iteration over a container object.
See the RecursiveIterator [http://de2.php.net/manual/en/class.recursiveiterator.php] php documentation for details.

	fqcn

	Short for “full qualified class name”. The full qualified class name is the class name including its full namespace
like foo\\bar\\baz\\ClassName for ClassName in namespace foo\\bar\\baz.

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	rampage-php 1.1.2-dev documentation

Index

 A
 | F
 | I
 | R
 | T

A

 	

 	ArrayAccess

F

 	

 	fqcn

I

 	

 	Iterator

R

 	

 	RecursiveIterator

T

 	

 	Traversable

 Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/minus.png

search.html

 Navigation

 		
 index

 		rampage-php 1.1.2-dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Axel Helmert.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

